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Feel Yourself a Student!
Dear friends, | would like to give to you an interesting and reliable antenna theory. Hours searching in the web
gave me lots theoretical information about antennas. Really, at first | did not know what information to choose
for ANTENTOP. Finally, | stopped on lectures “Modern Antennas in Wireless Telecommunications” written by
Prof. Natalia K. Nikolova from McMaster University, Hamilton, Canada.
You ask me: Why?
Well, | have read many textbooks on Antennas, both, as in Russian as in English. So, | have the possibility to
compare different textbook, and I think, that the lectures give knowledge in antenna field in great way. Here first
lecture “Introduction into Antenna Study” is here. Next issues of ANTENTOP will contain some other lectures.
So, feel yourself a student! Go to Antenna Studies!

I.G.
My Friends, the above placed Intro was given at ANTENTOP- 01- 2003 to Antennas Lectures.

Now | know, that the Lecture is one of popular topics of ANTENTOP. Every Antenna Lecture
was downloaded more than 1000 times!

Now | want to present to you one more very interesting Lecture 17- it is a Lecture Linear

Array Theory- Part lll. I believe, you cannot find such info anywhere for free! Very interesting
and very useful info for every ham, for every radio- engineer.

So, feel yourself a student! Go to Antenna Studies!

I.G.

McMaster University Hall Prof. Natalia K.
Nikolova
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Linear Array Theory- Part Il

N-element linear array with uniform spacing and non-uniform amplitude: binomial array; Dolph—Tschebyscheff
array; directivity and design considerations...

by Prof. Natalia K. Nikolova
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LECTURE 17: LINEAR ARRAYS - PART III

(N-element linear array with uniform spacing and non-uniform
amplitude: binomial array; Dolph—Tschebyscheff array, directivity
and design considerations.)

1. Advantages of linear array with non uniform amplitude

The most often met BSAs, classifed according to the type of

their excitation amplitude, are:

a) the uniform BSA - relatively high directivity, but the side-
lobe levels are high;

b) Dolph-Tschebyscheff (Chebyshev, Yeobier) BSA — for a
given number of elements directivity next after that of the
uniform BSA, but side-lobe levels are the lowest in
comparison with the other two types of arrays for a given
directivity.

c) Binomial BSA — does not have good directivity but has
very low side-lobe levels (when d = A/2, there are no side
lobes at all).

2. Array factor (AF) of a linear array with non-uniform
amplitude distribution
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fig. 6.17 pp.291, Balanis
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Examples of AFs of arrays of non-uniform amplitude distribution:

a) uniform amplitude distribution (N=5, d =A4/2, 6, =90°)

D=5
BW = 20.8°
SLL=—12dB

180°

b) triangular (1:2:3:2:1) amplitude distribution (N=5, d = 1/2,
6,=90")

D =426
BW = 26.0°
SLL=—19.1dB

180°
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¢) binomial (1:4:6:4:1) amplitude distribution (N=5, d =A1/2,
6,=90")

180°

d) Dolph-Tschebyschev (1:1.61:1.94:1.61:1) amplitude
distribution (N=5, d =4/2, 6, =90")

D =468
BW = 23.6°
SLL =—20dB

180°
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e) Dolph-Tschebyschev (1:2.41:3.14:2.41:1) amplitude
distribution (N=5, d =4/2, 6, =90°)

D =422
BW = 26.4°

\;.L =—30dB

Notice that as the current amplitude is tapered more towards
the edges of the array, the side-lobes tend to decrease, and the
beamwidth tends to increase.

Let us consider a linear array with an even number (2M) of
elements, located symmetrically along the z-axis, with excitation,
which is also symmetrical with respect to z=0. For a broadside

array, (f=0):

. jlkdcosé’ j3kdcost9 jZM_]kdcosﬁ
AF¢ =qe ? +a,e 2 +...+aye
1 3 2M 1 (17.1)
— j—kd cos@ —j=kd cos@ -
+ae 2 +ae ? +...+aMe
. X 2n—1
= AF =22an cos 5 kd cos@ (17.2)
n=|

www.antentop.org Page-09




ANTENTOP- 01- 2015, # 019 Linear Array Theory- Part Il

If the linear array consists of an odd number (2M+1) of
elements, located symmetrically along the z-axis, then the array

factor is:
AF?= 2(1| +azejkcic059+a3612kdcos§9 +m+aM+]€;Mkdc059 + (17 3)
+a2e—jkdcos.9 +a3€~j2kdcost9 +m+aM+le—ijdc059
M +1
= AF° =2 a,cos[ (n—1)kd cos@ ] (17.4)

n=I
The factors (2) in equations (17.2) and (17.4) are unimportant for
the normalized AF. Equations (17.2) and (17.4) can be re-written
as:

M
AF® =Y a,cos|(2n—1)u|, where N =2M (17.5)
n=I
M+1

AF°=Y"a,cos[2(n—1)u], where N=2M +1  (17.6)

n=1

Here, u = %COSQ :
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3. Binomial array

The binomial BSA was investigated and proposed by J.S.
Stones to synthesize patterns without side lobes. First, consider a
2—element array (along the z-axis).

The elements of the array are identical and their excitation 1s the
same. Its array factor is of the form:

AF =1+ Z , where Z = ¢V = ¢/<*0*F) (17.7)
If the spacing is d < A/2 and =0 (broad-side maximum), this
array will have no side lobes at all.
Second, consider a 2—element array whose elements are
identical and the same as the array given above. The distance
between the two arrays is again d.

— - @
=y
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This new array has an AF of the form:
AF =(1+2Z)(1+2)=1+2Z +Z> (17.8)

Since (1+ Z) has no side lobes, (1+Z)* will not have side lobes

either.
Continuing the process for an N-element array produces:
AF =(1+2)N (17.9)
If d <A/2, the above AF will not have side-lobes regardless of the
number of elements N. The excitation amplitude distribution can

be obtained easily by the expansion of the binome in (17.9).
Making use of Pascal’s triangle:

1
L1
121
1331
14641
1510 10 51

--------------------------

the relative excitation amplitudes at each element of an (N+1)-
element array can be determined. Such an array with a binomial
distribution of the excitation amplitudes is called a binomial array.
The current (excitation) distribution as given by the binomial
expansion gives the relative values of the amplitudes. It is
immediately seen that there is too wide variation of the amplitude,
which is the major disadvantage of the BAs. The overall efficiency
of such antenna would be very low. Besides, the BA has relatively
wide beam. Its HPBW is the largest as compared to this of the
uniform BSA or the Dolph—Chebyshev array.
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Approximate closed-form expression for the HPBW of a BA with
d=21/12is:

1.06 106 175
JN-1 J2L/2 \[L/A
where L= (N —1)d is the array’s length. The AFs of 10-element
broadside binomial arrays (N=10) are given below.

HPBW =

(17.10)
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Fig. 6.18, pp.293, Balanis
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The directivity of a broadside BA with spacing d = A/2 can be
calculated from the formula below:

2
Dy == o (17.11)
J[cos(ﬁcos Qﬂ de
0 2 ld=212
(2N -2)(2N -4)..2
= (17.12)
(2N —3)(2N =5)..1
D, =1.77N =1.77\1+2L/ A (17.13)

4. Dolph—Chebyshev (DCA)
Chebyshev=Tschebyscheff

Dolph proposed (in 1946) a method to design arrays with any
desired side-lobe levels and any HPBWs. This method is based on
the approximation of the pattern of the array by a Chebyshev
polynomial of order m, high enough to meet the requirement for
the side-lobe levels. Actually, a DCA with no side lobes (side-lobe
level of -eo dB) reduces to the binomial design.

4.1 The Chebyshev polynomials
The Chebyshev polynomials are defined by:

f(—l)”’ cosh(mcosh™ 1z1), z<—1

T, (z) ={cos(mcos™ z), —1< z<1 (17.14)

cosh(mcosh™ z), z>1
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A nice feature of Chebyschev polynomials is that 7,,(z) of any
order m can be derived via a recursion formula, provided 7,,.,(z)
and 7,,,(z) are defined.

Tm(z)=2ZTm—l(Z)_Tm—2(Z) (1715)

Explicitly, (17.15) produces:

m=0, T,(z)=1
m=1, T\(z)=z
m=2, T,(z)=2z*-1
. (17.16)
m=3, Ty(z)=4z -3z
m=4, T4(z)=824—8zz+1
m=>5. T5(z)=16z5 —~207° +5z, etc.

If 1 zI< 1, then Chebyshev polynomials are related to the cosine

functions, see (17.14). One can always expand the function
cos(mx) as a polynomial of cos(x) of order m, e.g.,

cos2x =2cos’ x—1 (17.17)
This is done by making use of Euler’s formula:
(e™)" = (cosx+ jsinx)" =e™ =cos(mx)+ jsin(mx) (17.18)

Similar relations hold for the hyperbolic cosine function. From
the example (17.17), one can see that the Chebyshev argument z is
related to the cosine argument x by:

Z=COSX Or X=arccosz (17.19)
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Then (17.17) can be written as:

cos(2arccos z) = 2[005(2 arccos z)]2 -1
=> cos(2arccos z) =2z° —1=T,(z) (17.20)

Compare it with definition (17.14) or with (17.16)-line 3.

Tm(2)
A

10

9

e To(z)

=5F o o o T4 (2)

:I’ o R R o i T(2)

.‘[ £5 1 o N = e B T3(z2)

.I —8 ssssssssssnsss 4(2)

,-I g e 5 (2Y
: -10b
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Properties of Chebyshev polynomials:
1) All polynomials of any order m pass through the point (1,1).
2) Within the range —1< z <1, the polynomials have values
within [-1,1].
3) All nulls occur within —1< z<1.
4) The maxima and minima in the ze [—1,1] range have values

+1 and -1, respectively.
5) The higher the order of the polynomial, the steeper the slope

forlzI>1

4.2 Chebyshev array design
The main goal is to approximate the desired AF with a
Chebyshev polynomial such that
o the side-lobe level meets the requirements, and
o the main beam width is small enough.
An array of N elements has an AF, which can be approximated
with a Chebyshev polynomial of order m that is always:

m=N-1], (17.21)
where: N =2M ,if Nis even;
N =2M +1, if Nis odd.

In general, for a given side-lobe level, the higher the order of
the polynomial, the narrower the beamwidth. But for m>10, the
difference is not substantial (see the slopes of 7,,(z) in the

previous figure).
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The AF of an N-element array (17.5) or (17.6) will be identical
with a Chebyshev polynomial if:

M
Y a,cos[(2n—Nu], N =2M -even

Ty (2)=1 " (17.22)

> a,cos[2(n—Dul],N =2M +1-odd

L n=1

wd
Here, u =—cosé.

Let the side-lobe level be:

E 1
Ry=—T% = voltage ratio 17.23
"=k, T AR, (voltag ) ( )
Then the maximum of 7,_, is fixed at an argument z;,, where

Ty (29) =Ry, (17.24)

where T_, >1.
Equation (17.24) corresponds to AF (u) = AF™ (u,).
Obviously, z, must satisfy the condition:
Zp>1 (17.25)

Then, the portion of AF(u), which corresponds to 7, _,(z) for
| zI< 1, will have levels lower or equal to the specified side-lobe
level R,. This portion of AF must correspond to the out-ot-main-

beam radiation pattern, i.e. the side lobes. The AF is a polynomial
of cosu and the 7)_,;(z) 1s a polynomial of z where the limits for z

are:
=l sz, (17.26)
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Since
—1<cosu<l (17.27)
the relation between z and cosu must be set as:
cosu o (17.28)
20
where 7z, >1.

Array design for an array of N elements — general procedure
1) Expand the AF as given by (17.5) or (17.6) by replacing each
cos(mu) term (m=1,2,...,M ) with the power series of cosu .
2) Determine z;, such that 7},_;(z,) = R, (voltage ratio).
3) Substitute cosu = z/z; in the AF as found in the previous

step.
4) Equate the AF found in Step 3 to 7,_,(z) and determine the

coefficients for each power of z.

Example: Design a DCA (broadside) of N=10 elements with a
major-to-minor lobe ratio of R, =26 dB. Find the excitation

coefficients and form the AF.

Solution:
1. The AF is:

2 zd
AFyy =Y a,cos[(2n—Du], u =7c039

n=l
2. Expand AF,,, in terms of cosu:

AF,, = a, cosu +a, cos3u + a; cosSu + a, cos 7u + a5 cos Yu
Here:
cos3u =4cos’ u —3cosu
cos5u =16cos’ u —20cos’ u +5cosu
cosTu =64cos’ u—112¢cos’ u +56cos’ u—7cosu
cos9u = 256¢0s’ u —576cos’ u+432cos’ u —120cos’ u +9cosu
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3

www.antentop.org

Determine z;:

26
R,=26 dB=>R, =10 720 =20
— T9 (Zo) = 20
cosh [QCOSh_l(ZO)] =20

9cosh™'(z,) =cosh™ 20=3.69
cosh™ (z9)=0.41

Zg =cosh0.41

zo =1.08515

Express the AF in terms of z=z,cosu:

)
.
+-5(4a, —20a, +56a, —120as)
<o
4
+2_(160a; —112a, +432a;)
20
.
+-=(64a, —576as )
<0
z _ 3 5 7 9
+2-(256a5) =92 =1202° + 4322 —5767" +2562°
ZO ?:)EZ)

Finding the coefficients by matching the power terms:
256a;5 =256z, = a5 = 2.0860

64a, —576a;s =—576z) = a, =2.8308
16a; —112a, +432a; = 432z) = a, = 4.1184
4a, —20a, +56a, —120as = —120z] = a, =5.2073
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a,—3a, +5a; —Ta, +9as =9z) = a, =5.8377

25

[ T9(2)|

—1.5 -10 ¢ -05 0 [ e G i

Fig. 6.20b, pp.298, Balanis

6. Normalize coefficients with respect to edge element (N=5):
as=1; a, =1.357; a;=1974; a, =2.496; a, =2.789

AF,, =2.789cos(u)+2.496 cos(3u ) +1.974cos(5u)
+1.357 cos(7u) +cos(9u)

where u = E—fcos&.
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—_—d =4

—_———— = =2

Fig. 6.21, pp.300, Balanis

4.3. The maximum affordable d, d

This restriction arises from the requirement for a single major
lobe — see also equation (17.26).

z2-1

=5 cos[z—jcosﬁ] 2] (17.29)

for Chebyshev arrays.

max ?

For a given array, when @ varies from 0" to 180", the argument z
assumes values:

from z=7z2 cosﬂ to z=2 cos{—ﬂ]
R & 4
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P ’ td
The extreme value z to the left of the abscissa is z =z, COST

(end-fire directions of the AF, @ =0° or 180°). This value must

not go beyond z =—1; otherwise minor lobes of levels higher than
1 (higher than R;)) will appear. Therefore, the inequality (17.29)

must hold for @ =0° or 180°:

wd wd |
70 COS| —L 1> —]1=>cos| —& | =2 ——
0 ( A ] [ A ] 20

Let:
¥ = arccos| —
<o
Then:
ﬁdmax ]
— 0 < —y =7/ —arccos| —
A Zo
=% h <1 —larccos i (17.30)
/1 T )

In the previous example:

dmax e l—larccos( I ] = l_m =(0.873

A T 1.08515 V4
d. <0.8731

5. Directivity of non-uniform arrays
It is difficult to derive closed form expressions for the
directivity of non-uniform arrays. Here, we shall derive
expressions in the form of series in the most general case of a
linear array.
The unnormalized array factor is:

N-1 _ .
AF = a,e'thelnc? (17.31)
n=0
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where:
a, 1s the amplitude of the excitation of the n-th element;

[, is the phase angle of the excitation of the n-th element;
z,, 18 the z-coordinate of the n-th element.

The maximum AF is:

N-1
AF,. = _a, (17.32)

n=1

The normalized AF is
N-1
" Z anejﬁ Jjkz, cos@
AF, = =10 (17.33)
AFI’HdX Z_a

The beam solid angle is derived as:
v/
Q, = 27rj|AFn (6)[ sin6d6

N-1N-1

QA P—— z Zam p I et sinodo
[N ’ ] m=0 p=0 0
a?’l
n=I1
where:
]Eefk(g z, )u)bt? 0d6 = 25i]’l|:k(Zm _Z‘D ):|
- k(zm —ZP)
Q, = 4E_2 3 N_lamape’(ﬂ B,) sin[k(zm — % )}
{Nwla ] m=0 p=0 k(zm _ZP) (17.34)
n=l1

www.antentop.org Page-24




ANTENTOP- 01- 2015, # 019 Linear Array Theory- Part Il

o L
Q,
N-1 )2
— D, = L (17.35)
0 Nz:lNZj )sm[k(z —ZP)]
a?ﬂ
m=0 p=0 P k(Zm_Zp)

For equispaced LA (17.35) reduces to:

N-1 )2
)
D, (17.36)

TN (5-p) 2sin[(m— p)kd]
Z;}a (m— pykd

1
m=0

because z, =nd .

For equispaced broadside arrays, where f,, = §, for any (m.p),
equation (17.36) reduces to:

N-1  \?
=)
= (17.37)

Nl sin[(m— p)kd |
,E)E) "0 (= p)kd

For equispaced broadside uniform arrays:
N2
N2 = 2sin|(m — p)kd |

bIp

m=0 p=0 (m - p)kd

(17.38)

D, =
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When the spacing d is a multiple of A/2, equation (17.37)
reduces to:

2

N-1 \2
[ ] i

Dy=~—"—~, d == R (17.39)
Y (a,)"

n=0

Example: Calculate the directivity of the Dolph—Chebyshev array
designed in the previous example if d = 1/2.

The 10-element DCA has the following amplitude distribution:
as=1; a,=1.357; a;=1974; a, =2.496; a,=2.798
We make use of (17.39):

5 2
4
o) e
Dy=—1 =2 =89 (9.5 dB)  (17.40)
,20.797
23 (a,)

n=0

6. Half-power beamwidth of a BS DCA.

For large DCA with side lobes in the range (-20 to —60) dB,
the HPBW can be found by introducing a beam-broadening factor,
/, given by:

2
Vi +O.636{Rlcosh [\/(ar«'scosifi’o)2 —r? }} (17.41)

0

The HPBW of the DCA is equal to the product of the broadening

factor by the HPBW of the respective uniform linear array:
HPBWp -, = f xHPBW,, (17.42)

In (17.41) R, denotes the side-lobe level (voltage ratio).
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